NTPsec

Dell-2018

Report generated: Wed Feb 4 00:53:02 2026 UTC
Start Time: Tue Feb 3 00:53:02 2026 UTC
End Time: Wed Feb 4 00:53:02 2026 UTC
Report Period: 1.0 days

Stats for the last 1, 7, 35, 98, 371, some days, or live gps data.

Local Clock Time/Frequency Offsets

local offset plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Time Offset -4.592 -4.504 -4.348 -3.686 -2.494 -2.248 -1.954 1.854 2.255 0.586 -3.560 ms 0.4528 2.207
Local Clock Frequency Offset 15.069 15.127 15.451 17.608 18.307 18.328 18.330 2.856 3.202 0.983 17.196 ppm -0.5946 1.924

The time and frequency offsets between the ntpd calculated time and the local system clock. Showing frequency offset (red, in parts per million, scale on right) and the time offset (blue, in μs, scale on left). Quick changes in time offset will lead to larger frequency offsets.

These are fields 3 (time) and 4 (frequency) from the loopstats log file.



Local RMS Time Jitter

local jitter plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Time Jitter 254.056 320.575 340.708 400.739 465.589 608.960 744.220 124.881 288.385 47.184 403.833 µs 2.075 13.65

The RMS Jitter of the local clock offset. In other words, how fast the local clock offset is changing.

Lower is better. An ideal system would be a horizontal line at 0μs.

RMS jitter is field 5 in the loopstats log file.



Local RMS Frequency Jitter

local stability plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Frequency Jitter 0.044 0.049 0.054 0.157 0.748 1.035 1.118 0.694 0.986 0.212 0.221 ppm 2.147 7.381

The RMS Frequency Jitter (aka wander) of the local clock's frequency. In other words, how fast the local clock changes frequency.

Lower is better. An ideal clock would be a horizontal line at 0ppm.

RMS Frequency Jitter is field 6 in the loopstats log file.



Local Clock Time Offset Histogram

local offset histogram plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Offset -4.592 -4.504 -4.348 -3.686 -2.494 -2.248 -1.954 1.854 2.255 0.586 -3.560 ms 0.4528 2.207

The clock offsets of the local clock as a histogram.

The Local Clock Offset is field 3 from the loopstats log file.



Local Temperatures

local temps plot

Local temperatures. These will be site-specific depending upon what temperature sensors you collect data from. Temperature changes affect the local clock crystal frequency and stability. The math of how temperature changes frequency is complex, and also depends on crystal aging. So there is no easy way to correct for it in software. This is the single most important component of frequency drift.

The Local Temperatures are from field 3 from the tempstats log file.



Local Frequency/Temp

local freq temps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 15.069 15.127 15.451 17.608 18.307 18.328 18.330 2.856 3.202 0.983 17.196 ppm -0.5946 1.924
Temp /dev/sda 18.000 18.000 20.000 25.000 26.000 26.000 26.000 6.000 8.000 2.305 23.490 °C
Temp LM0 32.000 32.000 32.000 34.000 36.000 43.000 43.000 4.000 11.000 1.285 34.260 °C
Temp LM1 37.000 37.000 37.000 39.000 39.000 43.000 43.000 2.000 6.000 0.790 38.646 °C
Temp LM2 0.000 0.000 0.000 19.000 19.000 19.000 19.000 19.000 19.000 5.251 17.417 °C
Temp LM3 29.000 29.000 29.000 31.000 32.000 38.000 38.000 3.000 9.000 1.077 30.719 °C
Temp LM4 44.000 44.000 44.000 47.000 48.000 49.000 49.000 4.000 5.000 1.118 46.469 °C
Temp LM5 29.000 29.000 29.000 31.000 32.000 39.000 39.000 3.000 10.000 1.168 30.729 °C
Temp LM6 31.000 31.000 31.000 33.000 35.000 42.000 42.000 4.000 11.000 1.389 33.083 °C
Temp LM7 33.000 33.000 33.000 35.000 37.000 43.000 43.000 4.000 10.000 1.259 35.302 °C
Temp LM8 33.000 33.000 35.000 35.000 37.000 43.000 43.000 2.000 10.000 1.253 35.688 °C
Temp LM9 33.000 33.000 35.000 35.000 37.000 43.000 43.000 2.000 10.000 1.253 35.688 °C
Temp ZONE0 20.000 20.000 20.000 20.000 20.000 20.000 20.000 0.000 0.000 0.000 20.000 °C
Temp ZONE1 32.000 32.000 32.000 34.000 36.000 43.000 43.000 4.000 11.000 1.287 34.271 °C
Temp ZONE2 29.000 29.000 29.000 31.000 32.000 39.000 39.000 3.000 10.000 1.168 30.729 °C
Temp ZONE3 32.000 32.000 32.000 34.000 36.000 42.000 42.000 4.000 10.000 1.220 34.271 °C
Temp ZONE4 32.000 32.000 32.000 34.000 36.000 43.000 43.000 4.000 11.000 1.285 34.260 °C
Temp ZONE5 43.000 43.000 44.000 47.000 48.000 49.000 49.000 4.000 6.000 1.154 46.448 °C
Temp ZONE6 29.000 29.000 29.000 31.000 32.000 39.000 39.000 3.000 10.000 1.152 30.760 °C

The frequency offsets and temperatures. Showing frequency offset (red, in parts per million, scale on right) and the temperatures.

These are field 4 (frequency) from the loopstats log file, and field 3 from the tempstats log file.



Local GPS

local gps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
nSats 12.000 12.000 13.000 16.000 19.000 20.000 20.000 6.000 8.000 1.955 15.896 nSat -0.02121 2.26
TDOP 0.500 0.500 0.560 0.710 1.100 1.420 1.420 0.540 0.920 0.168 0.750 1.497 5.611

Local GPS. The Time Dilution of Precision (TDOP) is plotted in blue. The number of visible satellites (nSat) is plotted in red.

TDOP is field 3, and nSats is field 4, from the gpsd log file. The gpsd log file is created by the ntploggps program.

TDOP is a dimensionless error factor. Smaller numbers are better. TDOP ranges from 1 (ideal), 2 to 5 (good), to greater than 20 (poor). Some GNSS receivers report TDOP less than one which is theoretically impossible.



Server Offsets

peer offsets plot

The offset of all refclocks and servers. This can be useful to see if offset changes are happening in a single clock or all clocks together.

Clock Offset is field 5 in the peerstats log file.



Server Offset 194.0.5.123

peer offset 194.0.5.123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 194.0.5.123 -8.514 -6.067 -4.174 1.125 4.616 16.957 28.503 8.790 23.024 3.514 1.037 ms 3.394 27.6

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2001:678:8::123 (any.time.nl)

peer offset 2001:678:8::123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2001:678:8::123 (any.time.nl) -14.635 -13.702 -12.022 -8.709 -5.835 -3.151 -2.955 6.188 10.551 1.916 -8.793 ms -0.0255 3.436

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2402:1f00:8101:d6::1

peer offset 2402:1f00:8101:d6::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2402:1f00:8101:d6::1 37.539 38.571 40.338 46.273 49.167 50.534 50.957 8.829 11.962 2.518 45.807 ms -0.9777 3.88

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2600:1900:4060:2e7:: (0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.7.e.2.0.0.6.0.4.0.0.9.1.0.0.6.2.bc.googleusercontent.com)

peer offset 2600:1900:4060:2e7:: plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2600:1900:4060:2e7:: (0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.7.e.2.0.0.6.0.4.0.0.9.1.0.0.6.2.bc.googleusercontent.com) -3.781 -3.636 -0.745 2.551 5.331 6.747 7.748 6.076 10.383 1.841 2.389 ms -0.237 3.824

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2a00:d78:0:712:94:198:159:11 (nts1.time.nl)

peer offset 2a00:d78:0:712:94:198:159:11 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2a00:d78:0:712:94:198:159:11 (nts1.time.nl) -1.953 -1.881 0.298 3.594 5.990 7.315 8.089 5.692 9.195 1.813 3.359 ms -0.461 3.4

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 34.147.28.4

peer offset 34.147.28.4 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 34.147.28.4 -4.835 -4.835 -3.772 -0.989 0.841 4.386 4.386 4.613 9.221 1.757 -1.030 ms 0.5171 4.274

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 77.42.37.85

peer offset 77.42.37.85 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 77.42.37.85 -1.592 -1.592 -0.733 1.667 4.113 5.643 5.643 4.846 7.235 1.525 1.621 ms 0.2352 2.594

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 79.160.225.13

peer offset 79.160.225.13 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 79.160.225.13 -7.402 -7.402 -3.335 -1.612 2.312 3.474 3.474 5.647 10.876 1.874 -1.390 ms 0.102 4.622

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Refclock Offset SHM(0)

peer offset SHM(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Refclock Offset SHM(0) -163.433 -161.291 -159.640 -154.543 -150.339 -149.315 -147.774 9.301 11.976 2.896 -154.840 ms -0.115 2.356

The offset of a local refclock in seconds. This is useful to see how the measured offset is behaving.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local serial GPS 200 ms; local PPS 20µs.

Clock Offset is field 5 in the peerstats log file.



Refclock Offset SHM(1)

peer offset SHM(1) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Refclock Offset SHM(1) -4.821 -4.721 -4.550 -3.881 -2.699 -2.458 -2.318 1.851 2.263 0.593 -3.753 ms 0.4056 2.134

The offset of a local refclock in seconds. This is useful to see how the measured offset is behaving.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local serial GPS 200 ms; local PPS 20µs.

Clock Offset is field 5 in the peerstats log file.



Server Jitters

peer jitters plot

The RMS Jitter of all refclocks and servers. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 194.0.5.123

peer jitter 194.0.5.123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 194.0.5.123 0.963 1.084 1.293 3.853 12.997 21.409 23.467 11.704 20.324 4.054 5.056 ms 1.849 7.066

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2001:678:8::123 (any.time.nl)

peer jitter 2001:678:8::123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2001:678:8::123 (any.time.nl) 1.080 1.087 1.333 3.939 15.701 73.177 73.968 14.368 72.090 10.789 6.614 ms 4.61 25.48

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2402:1f00:8101:d6::1

peer jitter 2402:1f00:8101:d6::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2402:1f00:8101:d6::1 0.907 0.967 1.253 3.369 9.854 20.066 20.844 8.601 19.099 3.222 4.190 ms 2.474 11.52

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2600:1900:4060:2e7:: (0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.7.e.2.0.0.6.0.4.0.0.9.1.0.0.6.2.bc.googleusercontent.com)

peer jitter 2600:1900:4060:2e7:: plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2600:1900:4060:2e7:: (0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.7.e.2.0.0.6.0.4.0.0.9.1.0.0.6.2.bc.googleusercontent.com) 0.906 0.957 1.455 3.927 17.604 22.250 22.479 16.149 21.294 4.538 5.483 ms 2.079 7.182

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2a00:d78:0:712:94:198:159:11 (nts1.time.nl)

peer jitter 2a00:d78:0:712:94:198:159:11 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2a00:d78:0:712:94:198:159:11 (nts1.time.nl) 0.853 1.198 1.846 4.945 11.355 15.401 17.635 9.509 14.203 2.983 5.400 ms 1.4 5.48

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 34.147.28.4

peer jitter 34.147.28.4 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 34.147.28.4 0.927 0.927 1.300 3.851 6.939 8.693 8.693 5.639 7.767 1.819 4.013 ms 0.4754 2.586

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 77.42.37.85

peer jitter 77.42.37.85 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 77.42.37.85 1.242 1.242 1.481 3.550 10.392 11.140 11.140 8.911 9.898 2.256 4.175 ms 1.353 4.75

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 79.160.225.13

peer jitter 79.160.225.13 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 79.160.225.13 0.550 0.550 1.014 3.406 7.614 14.707 14.707 6.599 14.157 2.586 3.744 ms 2.298 10.29

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Refclock RMS Jitter SHM(0)

peer jitter SHM(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Refclock RMS Jitter SHM(0) 0.425 0.522 0.780 1.749 3.895 5.232 6.390 3.115 4.710 1.001 2.006 ms 1.156 4.59

The RMS Jitter of a local refclock. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Refclock RMS Jitter SHM(1)

peer jitter SHM(1) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Refclock RMS Jitter SHM(1) 0.138 0.209 0.232 0.334 0.623 1.040 1.385 0.391 0.830 0.152 0.369 ms 2.833 13.88

The RMS Jitter of a local refclock. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Summary


Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 15.069 15.127 15.451 17.608 18.307 18.328 18.330 2.856 3.202 0.983 17.196 ppm -0.5946 1.924
Local Clock Time Offset -4.592 -4.504 -4.348 -3.686 -2.494 -2.248 -1.954 1.854 2.255 0.586 -3.560 ms 0.4528 2.207
Local RMS Frequency Jitter 0.044 0.049 0.054 0.157 0.748 1.035 1.118 0.694 0.986 0.212 0.221 ppm 2.147 7.381
Local RMS Time Jitter 254.056 320.575 340.708 400.739 465.589 608.960 744.220 124.881 288.385 47.184 403.833 µs 2.075 13.65
Refclock Offset SHM(0) -163.433 -161.291 -159.640 -154.543 -150.339 -149.315 -147.774 9.301 11.976 2.896 -154.840 ms -0.115 2.356
Refclock Offset SHM(1) -4.821 -4.721 -4.550 -3.881 -2.699 -2.458 -2.318 1.851 2.263 0.593 -3.753 ms 0.4056 2.134
Refclock RMS Jitter SHM(0) 0.425 0.522 0.780 1.749 3.895 5.232 6.390 3.115 4.710 1.001 2.006 ms 1.156 4.59
Refclock RMS Jitter SHM(1) 0.138 0.209 0.232 0.334 0.623 1.040 1.385 0.391 0.830 0.152 0.369 ms 2.833 13.88
Server Jitter 194.0.5.123 0.963 1.084 1.293 3.853 12.997 21.409 23.467 11.704 20.324 4.054 5.056 ms 1.849 7.066
Server Jitter 2001:678:8::123 (any.time.nl) 1.080 1.087 1.333 3.939 15.701 73.177 73.968 14.368 72.090 10.789 6.614 ms 4.61 25.48
Server Jitter 2402:1f00:8101:d6::1 0.907 0.967 1.253 3.369 9.854 20.066 20.844 8.601 19.099 3.222 4.190 ms 2.474 11.52
Server Jitter 2600:1900:4060:2e7:: (0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.7.e.2.0.0.6.0.4.0.0.9.1.0.0.6.2.bc.googleusercontent.com) 0.906 0.957 1.455 3.927 17.604 22.250 22.479 16.149 21.294 4.538 5.483 ms 2.079 7.182
Server Jitter 2a00:d78:0:712:94:198:159:11 (nts1.time.nl) 0.853 1.198 1.846 4.945 11.355 15.401 17.635 9.509 14.203 2.983 5.400 ms 1.4 5.48
Server Jitter 34.147.28.4 0.927 0.927 1.300 3.851 6.939 8.693 8.693 5.639 7.767 1.819 4.013 ms 0.4754 2.586
Server Jitter 77.42.37.85 1.242 1.242 1.481 3.550 10.392 11.140 11.140 8.911 9.898 2.256 4.175 ms 1.353 4.75
Server Jitter 79.160.225.13 0.550 0.550 1.014 3.406 7.614 14.707 14.707 6.599 14.157 2.586 3.744 ms 2.298 10.29
Server Offset 194.0.5.123 -8.514 -6.067 -4.174 1.125 4.616 16.957 28.503 8.790 23.024 3.514 1.037 ms 3.394 27.6
Server Offset 2001:678:8::123 (any.time.nl) -14.635 -13.702 -12.022 -8.709 -5.835 -3.151 -2.955 6.188 10.551 1.916 -8.793 ms -0.0255 3.436
Server Offset 2402:1f00:8101:d6::1 37.539 38.571 40.338 46.273 49.167 50.534 50.957 8.829 11.962 2.518 45.807 ms -0.9777 3.88
Server Offset 2600:1900:4060:2e7:: (0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.7.e.2.0.0.6.0.4.0.0.9.1.0.0.6.2.bc.googleusercontent.com) -3.781 -3.636 -0.745 2.551 5.331 6.747 7.748 6.076 10.383 1.841 2.389 ms -0.237 3.824
Server Offset 2a00:d78:0:712:94:198:159:11 (nts1.time.nl) -1.953 -1.881 0.298 3.594 5.990 7.315 8.089 5.692 9.195 1.813 3.359 ms -0.461 3.4
Server Offset 34.147.28.4 -4.835 -4.835 -3.772 -0.989 0.841 4.386 4.386 4.613 9.221 1.757 -1.030 ms 0.5171 4.274
Server Offset 77.42.37.85 -1.592 -1.592 -0.733 1.667 4.113 5.643 5.643 4.846 7.235 1.525 1.621 ms 0.2352 2.594
Server Offset 79.160.225.13 -7.402 -7.402 -3.335 -1.612 2.312 3.474 3.474 5.647 10.876 1.874 -1.390 ms 0.102 4.622
TDOP 0.500 0.500 0.560 0.710 1.100 1.420 1.420 0.540 0.920 0.168 0.750 1.497 5.611
Temp /dev/sda 18.000 18.000 20.000 25.000 26.000 26.000 26.000 6.000 8.000 2.305 23.490 °C
Temp LM0 32.000 32.000 32.000 34.000 36.000 43.000 43.000 4.000 11.000 1.285 34.260 °C
Temp LM1 37.000 37.000 37.000 39.000 39.000 43.000 43.000 2.000 6.000 0.790 38.646 °C
Temp LM2 0.000 0.000 0.000 19.000 19.000 19.000 19.000 19.000 19.000 5.251 17.417 °C
Temp LM3 29.000 29.000 29.000 31.000 32.000 38.000 38.000 3.000 9.000 1.077 30.719 °C
Temp LM4 44.000 44.000 44.000 47.000 48.000 49.000 49.000 4.000 5.000 1.118 46.469 °C
Temp LM5 29.000 29.000 29.000 31.000 32.000 39.000 39.000 3.000 10.000 1.168 30.729 °C
Temp LM6 31.000 31.000 31.000 33.000 35.000 42.000 42.000 4.000 11.000 1.389 33.083 °C
Temp LM7 33.000 33.000 33.000 35.000 37.000 43.000 43.000 4.000 10.000 1.259 35.302 °C
Temp LM8 33.000 33.000 35.000 35.000 37.000 43.000 43.000 2.000 10.000 1.253 35.688 °C
Temp LM9 33.000 33.000 35.000 35.000 37.000 43.000 43.000 2.000 10.000 1.253 35.688 °C
Temp ZONE0 20.000 20.000 20.000 20.000 20.000 20.000 20.000 0.000 0.000 0.000 20.000 °C
Temp ZONE1 32.000 32.000 32.000 34.000 36.000 43.000 43.000 4.000 11.000 1.287 34.271 °C
Temp ZONE2 29.000 29.000 29.000 31.000 32.000 39.000 39.000 3.000 10.000 1.168 30.729 °C
Temp ZONE3 32.000 32.000 32.000 34.000 36.000 42.000 42.000 4.000 10.000 1.220 34.271 °C
Temp ZONE4 32.000 32.000 32.000 34.000 36.000 43.000 43.000 4.000 11.000 1.285 34.260 °C
Temp ZONE5 43.000 43.000 44.000 47.000 48.000 49.000 49.000 4.000 6.000 1.154 46.448 °C
Temp ZONE6 29.000 29.000 29.000 31.000 32.000 39.000 39.000 3.000 10.000 1.152 30.760 °C
nSats 12.000 12.000 13.000 16.000 19.000 20.000 20.000 6.000 8.000 1.955 15.896 nSat -0.02121 2.26
Summary as CSV file

Stats for the last 1, 7, 35, 98, 371, some days, or live gps data.

Glossary:

frequency offset:
The difference between the ntpd calculated frequency and the local system clock frequency (usually in parts per million, ppm)
jitter, dispersion:
The short term change in a value. NTP measures Local Time Jitter, Refclock Jitter, and Server Jitter in seconds. Local Frequency Jitter is in ppm or ppb.
ms, millisecond:
One thousandth of a second = 0.001 seconds, 1e-3 seconds
mu, mean:
The arithmetic mean: the sum of all the values divided by the number of values. The formula for mu is: "mu = (∑xi) / N". Where xi denotes the data points and N is the number of data points.
ns, nanosecond:
One billionth of a second, also one thousandth of a microsecond, 0.000000001 seconds and 1e-9 seconds.
percentile:
The value below which a given percentage of values fall.
ppb, parts per billion:
Ratio between two values. These following are all the same: 1 ppb, one in one billion, 1/1,000,000,000, 0.000,000,001, 1e-9 and 0.000,000,1%
ppm, parts per million:
Ratio between two values. These following are all the same: 1 ppm, one in one million, 1/1,000,000, 0.000,001, and 0.000,1%
‰, parts per thousand:
Ratio between two values. These following are all the same: 1 ‰. one in one thousand, 1/1,000, 0.001, and 0.1%
refclock:
Reference clock, a local GPS module or other local source of time.
remote clock:
Any clock reached over the network, LAN or WAN. Also called a peer or server.
time offset:
The difference between the ntpd calculated time and the local system clock's time. Also called phase offset.
σ, sigma:
Sigma denotes the standard deviation (SD) and is centered on the arithmetic mean of the data set. The SD is simply the square root of the variance of the data set. Two sigma is simply twice the standard deviation. Three sigma is three times sigma. Smaller is better.
The formula for sigma is: "σ = √[ ∑(xi-mu)^2 / N ]". Where xi denotes the data points and N is the number of data points.
Skewness, Skew:
The skewness of a random variable X is the third standardized moment and is a dimension-less ratio. ntpviz uses the FIsher-Pearson moment of skewness. There are other different ways to calculate Skewness Wikipedia describes Skewness best: "The qualitative interpretation of the skew is complicated and unintuitive."
A normal distribution has a skewness of zero.
Kurtosis, Kurt:
The kurtosis of a random variable X is the fourth standardized moment and is a dimension-less ratio. ntpviz uses standard Kurtosis. There are other different ways to calculate Kurtosis.
A normal distribution has a Kurtosis of three. NIST describes a kurtosis over three as "heavy tailed" and one under three as "light tailed".
upstream clock:
Any server or reference clock used as a source of time.
µs, us, microsecond:
One millionth of a second, also one thousandth of a millisecond, 0.000,001 seconds, and 1e-6 seconds.



This page autogenerated by ntpviz, part of the NTPsec project
html 5    Valid CSS!