NTPsec

Dell-2018

Report generated: Tue Feb 3 19:45:10 2026 UTC
Start Time: Tue Jan 27 19:45:09 2026 UTC
End Time: Tue Feb 3 19:45:09 2026 UTC
Report Period: 7.0 days

Stats for the last 1, 7, 35, 98, 371, some days, or live gps data.

Local Clock Time/Frequency Offsets

local offset plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Time Offset -5.127 -4.673 -4.537 -4.128 -3.124 -2.515 -1.954 1.412 2.159 0.424 -4.056 ms 1.564 6.191
Local Clock Frequency Offset 15.069 15.526 16.802 18.051 18.370 18.419 18.917 1.568 2.893 0.518 17.940 ppm -3.156 14.05

The time and frequency offsets between the ntpd calculated time and the local system clock. Showing frequency offset (red, in parts per million, scale on right) and the time offset (blue, in μs, scale on left). Quick changes in time offset will lead to larger frequency offsets.

These are fields 3 (time) and 4 (frequency) from the loopstats log file.



Local RMS Time Jitter

local jitter plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Time Jitter 236.767 301.672 333.406 385.932 447.734 504.419 744.220 114.328 202.747 38.490 387.844 µs 1.079 9.074

The RMS Jitter of the local clock offset. In other words, how fast the local clock offset is changing.

Lower is better. An ideal system would be a horizontal line at 0μs.

RMS jitter is field 5 in the loopstats log file.



Local RMS Frequency Jitter

local stability plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local RMS Frequency Jitter 41.128 54.454 80.267 148.146 235.347 647.516 1,117.875 155.080 593.062 90.070 159.610 ppb 5.658 45.66

The RMS Frequency Jitter (aka wander) of the local clock's frequency. In other words, how fast the local clock changes frequency.

Lower is better. An ideal clock would be a horizontal line at 0ppm.

RMS Frequency Jitter is field 6 in the loopstats log file.



Local Clock Time Offset Histogram

local offset histogram plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Offset -5.127 -4.673 -4.537 -4.128 -3.124 -2.515 -1.954 1.412 2.159 0.424 -4.056 ms 1.564 6.191

The clock offsets of the local clock as a histogram.

The Local Clock Offset is field 3 from the loopstats log file.



Local Temperatures

local temps plot

Local temperatures. These will be site-specific depending upon what temperature sensors you collect data from. Temperature changes affect the local clock crystal frequency and stability. The math of how temperature changes frequency is complex, and also depends on crystal aging. So there is no easy way to correct for it in software. This is the single most important component of frequency drift.

The Local Temperatures are from field 3 from the tempstats log file.



Local Frequency/Temp

local freq temps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 15.069 15.526 16.802 18.051 18.370 18.419 18.917 1.568 2.893 0.518 17.940 ppm -3.156 14.05
Temp /dev/sda 18.000 18.000 20.000 23.000 26.000 26.000 31.000 6.000 8.000 2.081 23.414 °C
Temp LM0 32.000 32.000 32.000 34.000 36.000 48.000 51.000 4.000 16.000 2.363 33.946 °C
Temp LM1 37.000 37.000 37.000 38.000 39.000 45.000 46.000 2.000 8.000 1.204 38.170 °C
Temp LM2 0.000 0.000 0.000 19.000 19.000 19.000 19.000 19.000 19.000 4.943 17.613 °C
Temp LM3 28.000 29.000 29.000 30.000 31.000 41.000 44.000 2.000 12.000 1.915 30.168 °C
Temp LM4 30.000 31.000 31.000 41.000 47.000 50.000 55.000 16.000 19.000 5.280 40.985 °C
Temp LM5 28.000 29.000 29.000 30.000 32.000 41.000 44.000 3.000 12.000 1.962 30.185 °C
Temp LM6 30.000 31.000 31.000 32.000 34.000 46.000 50.000 3.000 15.000 2.348 32.638 °C
Temp LM7 32.000 33.000 33.000 35.000 36.000 48.000 51.000 3.000 15.000 2.300 34.709 °C
Temp LM8 33.000 33.000 33.000 35.000 37.000 48.000 51.000 4.000 15.000 2.216 35.180 °C
Temp LM9 33.000 33.000 33.000 35.000 37.000 48.000 51.000 4.000 15.000 2.216 35.180 °C
Temp ZONE0 20.000 20.000 20.000 20.000 20.000 20.000 20.000 0.000 0.000 0.000 20.000 °C
Temp ZONE1 32.000 32.000 32.000 34.000 36.000 48.000 51.000 4.000 16.000 2.364 33.948 °C
Temp ZONE2 28.000 29.000 29.000 30.000 32.000 41.000 44.000 3.000 12.000 1.961 30.185 °C
Temp ZONE3 32.000 32.000 32.000 34.000 36.000 48.000 51.000 4.000 16.000 2.363 33.946 °C
Temp ZONE4 32.000 32.000 32.000 34.000 36.000 48.000 51.000 4.000 16.000 2.363 33.946 °C
Temp ZONE5 31.000 31.000 31.000 41.000 48.000 50.000 56.000 17.000 19.000 5.296 40.993 °C
Temp ZONE6 28.000 29.000 29.000 30.000 31.000 41.000 44.000 2.000 12.000 1.919 30.183 °C

The frequency offsets and temperatures. Showing frequency offset (red, in parts per million, scale on right) and the temperatures.

These are field 4 (frequency) from the loopstats log file, and field 3 from the tempstats log file.



Local GPS

local gps plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
nSats 7.000 7.000 7.000 10.000 12.000 13.000 13.000 5.000 6.000 1.445 10.018 nSat -0.1353 2.562
TDOP 0.500 0.500 0.550 1.010 1.590 11.810 11.810 1.040 11.310 1.445 1.238 6.852 50.26

Local GPS. The Time Dilution of Precision (TDOP) is plotted in blue. The number of visible satellites (nSat) is plotted in red.

TDOP is field 3, and nSats is field 4, from the gpsd log file. The gpsd log file is created by the ntploggps program.

TDOP is a dimensionless error factor. Smaller numbers are better. TDOP ranges from 1 (ideal), 2 to 5 (good), to greater than 20 (poor). Some GNSS receivers report TDOP less than one which is theoretically impossible.



Server Offsets

peer offsets plot

The offset of all refclocks and servers. This can be useful to see if offset changes are happening in a single clock or all clocks together.

Clock Offset is field 5 in the peerstats log file.



Server Offset 194.0.5.123

peer offset 194.0.5.123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 194.0.5.123 -26.524 -10.088 -4.992 0.433 6.517 15.304 37.622 11.510 25.393 4.147 0.502 ms 1.558 20.27

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2001:678:8::123 (any.time.nl)

peer offset 2001:678:8::123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2001:678:8::123 (any.time.nl) -107.402 -32.520 -13.687 -8.751 -5.642 -4.043 4.955 8.045 28.477 6.568 -9.596 ms -9.107 109.3

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2402:1f00:8101:d6::1

peer offset 2402:1f00:8101:d6::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2402:1f00:8101:d6::1 -36.205 6.728 29.678 44.795 48.072 49.367 69.786 18.393 42.639 7.779 43.021 ms -4.713 35.14

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2600:1900:4060:2e7:: (0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.7.e.2.0.0.6.0.4.0.0.9.1.0.0.6.2.bc.googleusercontent.com)

peer offset 2600:1900:4060:2e7:: plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2600:1900:4060:2e7:: (0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.7.e.2.0.0.6.0.4.0.0.9.1.0.0.6.2.bc.googleusercontent.com) -89.450 -30.895 -6.466 2.076 5.017 6.547 8.102 11.483 37.441 7.862 0.676 ms -6.749 60.4

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 2a00:d78:0:712:94:198:159:11 (nts1.time.nl)

peer offset 2a00:d78:0:712:94:198:159:11 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 2a00:d78:0:712:94:198:159:11 (nts1.time.nl) -304.730 -10.572 -0.826 3.412 6.077 9.542 15.806 6.902 20.114 10.025 2.844 ms -28.08 859.5

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 34.147.28.4

peer offset 34.147.28.4 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 34.147.28.4 -23.549 -14.563 -7.097 -1.691 1.203 4.386 9.782 8.301 18.949 2.961 -2.031 ms -2.014 13.66

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 77.42.37.85

peer offset 77.42.37.85 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 77.42.37.85 -88.107 -71.291 -11.358 1.148 3.673 5.267 7.702 15.031 76.557 11.768 -1.161 ms -5.436 33.29

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Server Offset 79.160.225.13

peer offset 79.160.225.13 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Offset 79.160.225.13 -59.926 -33.405 -5.296 -1.788 1.425 3.049 11.556 6.721 36.454 5.391 -2.320 ms -6.648 58.53

The offset of a server in seconds. This is useful to see how the measured offset is behaving.

The chart also plots offset±rtt, where rtt is the round trip time to the server. NTP can not really know the offset of a remote chimer, NTP computes it by subtracting rtt/2 from the offset. Plotting the offset±rtt reverses this calculation to more easily see the effects of rtt changes.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local LAN server 80µs; 90% ranges for WAN server may be 4ms and much larger.

Clock Offset is field 5 in the peerstats log file. The Round Trip Time (rtt) is field 6 in the peerstats log file.



Refclock Offset SHM(0)

peer offset SHM(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Refclock Offset SHM(0) -172.609 -162.098 -159.857 -154.900 -150.282 -148.742 -146.618 9.576 13.356 3.017 -155.111 ms -0.1706 2.972

The offset of a local refclock in seconds. This is useful to see how the measured offset is behaving.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local serial GPS 200 ms; local PPS 20µs.

Clock Offset is field 5 in the peerstats log file.



Refclock Offset SHM(1)

peer offset SHM(1) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Refclock Offset SHM(1) -5.213 -4.887 -4.763 -4.319 -3.319 -2.759 -2.318 1.444 2.128 0.431 -4.255 ms 1.472 5.852

The offset of a local refclock in seconds. This is useful to see how the measured offset is behaving.

Closer to 0s is better. An ideal system would be a horizontal line at 0s. Typical 90% ranges may be: local serial GPS 200 ms; local PPS 20µs.

Clock Offset is field 5 in the peerstats log file.



Server Jitters

peer jitters plot

The RMS Jitter of all refclocks and servers. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 194.0.5.123

peer jitter 194.0.5.123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 194.0.5.123 0.000 0.809 1.179 3.615 14.388 20.959 163.881 13.209 20.150 9.374 5.253 ms 13.87 231.6

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2001:678:8::123 (any.time.nl)

peer jitter 2001:678:8::123 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2001:678:8::123 (any.time.nl) 0.783 1.199 1.755 11.825 96.554 113.190 126.772 94.800 111.991 31.690 27.276 ms 1.319 3.533

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2402:1f00:8101:d6::1

peer jitter 2402:1f00:8101:d6::1 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2402:1f00:8101:d6::1 0.691 1.064 1.678 12.164 71.910 89.987 169.795 70.232 88.924 24.455 23.207 ms 1.362 4.895

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2600:1900:4060:2e7:: (0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.7.e.2.0.0.6.0.4.0.0.9.1.0.0.6.2.bc.googleusercontent.com)

peer jitter 2600:1900:4060:2e7:: plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2600:1900:4060:2e7:: (0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.7.e.2.0.0.6.0.4.0.0.9.1.0.0.6.2.bc.googleusercontent.com) 0.565 0.981 1.658 12.267 88.123 103.433 118.509 86.465 102.452 27.798 24.607 ms 1.401 3.842

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 2a00:d78:0:712:94:198:159:11 (nts1.time.nl)

peer jitter 2a00:d78:0:712:94:198:159:11 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 2a00:d78:0:712:94:198:159:11 (nts1.time.nl) 0.816 1.273 2.193 11.546 84.693 102.917 310.532 82.500 101.644 28.833 25.141 ms 2.091 12.52

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 34.147.28.4

peer jitter 34.147.28.4 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 34.147.28.4 0.000 1.134 1.620 9.750 78.336 102.464 112.750 76.715 101.330 25.461 22.153 ms 1.434 4.13

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 77.42.37.85

peer jitter 77.42.37.85 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 77.42.37.85 0.000 1.038 1.457 13.579 78.767 93.775 112.572 77.310 92.737 24.622 22.343 ms 1.436 4.256

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Server Jitter 79.160.225.13

peer jitter 79.160.225.13 plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Server Jitter 79.160.225.13 0.000 0.932 1.487 12.325 78.137 100.942 111.150 76.651 100.009 25.029 22.284 ms 1.478 4.396

The RMS Jitter of a server. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Refclock RMS Jitter SHM(0)

peer jitter SHM(0) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Refclock RMS Jitter SHM(0) 0.218 0.496 0.696 1.736 4.050 5.378 17.737 3.353 4.882 1.144 1.980 ms 2.631 23.92

The RMS Jitter of a local refclock. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Refclock RMS Jitter SHM(1)

peer jitter SHM(1) plot

Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Refclock RMS Jitter SHM(1) 175.751 212.838 232.304 330.733 506.422 665.618 1,385.095 274.118 452.780 99.360 346.453 µs 2.177 14.52

The RMS Jitter of a local refclock. Jitter is the current estimated dispersion, in other words the variation in offset between samples.

Closer to 0s is better. An ideal system would be a horizontal line at 0s.

RMS Jitter is field 8 in the peerstats log file.



Summary


Percentiles...... Ranges...... Skew- Kurt-
Name Min1%5%50%95% 99%Max   90%98%StdDev  MeanUnits nessosis
Local Clock Frequency Offset 15.069 15.526 16.802 18.051 18.370 18.419 18.917 1.568 2.893 0.518 17.940 ppm -3.156 14.05
Local Clock Time Offset -5.127 -4.673 -4.537 -4.128 -3.124 -2.515 -1.954 1.412 2.159 0.424 -4.056 ms 1.564 6.191
Local RMS Frequency Jitter 41.128 54.454 80.267 148.146 235.347 647.516 1,117.875 155.080 593.062 90.070 159.610 ppb 5.658 45.66
Local RMS Time Jitter 236.767 301.672 333.406 385.932 447.734 504.419 744.220 114.328 202.747 38.490 387.844 µs 1.079 9.074
Refclock Offset SHM(0) -172.609 -162.098 -159.857 -154.900 -150.282 -148.742 -146.618 9.576 13.356 3.017 -155.111 ms -0.1706 2.972
Refclock Offset SHM(1) -5.213 -4.887 -4.763 -4.319 -3.319 -2.759 -2.318 1.444 2.128 0.431 -4.255 ms 1.472 5.852
Refclock RMS Jitter SHM(0) 0.218 0.496 0.696 1.736 4.050 5.378 17.737 3.353 4.882 1.144 1.980 ms 2.631 23.92
Refclock RMS Jitter SHM(1) 175.751 212.838 232.304 330.733 506.422 665.618 1,385.095 274.118 452.780 99.360 346.453 µs 2.177 14.52
Server Jitter 194.0.5.123 0.000 0.809 1.179 3.615 14.388 20.959 163.881 13.209 20.150 9.374 5.253 ms 13.87 231.6
Server Jitter 2001:678:8::123 (any.time.nl) 0.783 1.199 1.755 11.825 96.554 113.190 126.772 94.800 111.991 31.690 27.276 ms 1.319 3.533
Server Jitter 2402:1f00:8101:d6::1 0.691 1.064 1.678 12.164 71.910 89.987 169.795 70.232 88.924 24.455 23.207 ms 1.362 4.895
Server Jitter 2600:1900:4060:2e7:: (0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.7.e.2.0.0.6.0.4.0.0.9.1.0.0.6.2.bc.googleusercontent.com) 0.565 0.981 1.658 12.267 88.123 103.433 118.509 86.465 102.452 27.798 24.607 ms 1.401 3.842
Server Jitter 2a00:d78:0:712:94:198:159:11 (nts1.time.nl) 0.816 1.273 2.193 11.546 84.693 102.917 310.532 82.500 101.644 28.833 25.141 ms 2.091 12.52
Server Jitter 34.147.28.4 0.000 1.134 1.620 9.750 78.336 102.464 112.750 76.715 101.330 25.461 22.153 ms 1.434 4.13
Server Jitter 77.42.37.85 0.000 1.038 1.457 13.579 78.767 93.775 112.572 77.310 92.737 24.622 22.343 ms 1.436 4.256
Server Jitter 79.160.225.13 0.000 0.932 1.487 12.325 78.137 100.942 111.150 76.651 100.009 25.029 22.284 ms 1.478 4.396
Server Offset 194.0.5.123 -26.524 -10.088 -4.992 0.433 6.517 15.304 37.622 11.510 25.393 4.147 0.502 ms 1.558 20.27
Server Offset 2001:678:8::123 (any.time.nl) -107.402 -32.520 -13.687 -8.751 -5.642 -4.043 4.955 8.045 28.477 6.568 -9.596 ms -9.107 109.3
Server Offset 2402:1f00:8101:d6::1 -36.205 6.728 29.678 44.795 48.072 49.367 69.786 18.393 42.639 7.779 43.021 ms -4.713 35.14
Server Offset 2600:1900:4060:2e7:: (0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.7.e.2.0.0.6.0.4.0.0.9.1.0.0.6.2.bc.googleusercontent.com) -89.450 -30.895 -6.466 2.076 5.017 6.547 8.102 11.483 37.441 7.862 0.676 ms -6.749 60.4
Server Offset 2a00:d78:0:712:94:198:159:11 (nts1.time.nl) -304.730 -10.572 -0.826 3.412 6.077 9.542 15.806 6.902 20.114 10.025 2.844 ms -28.08 859.5
Server Offset 34.147.28.4 -23.549 -14.563 -7.097 -1.691 1.203 4.386 9.782 8.301 18.949 2.961 -2.031 ms -2.014 13.66
Server Offset 77.42.37.85 -88.107 -71.291 -11.358 1.148 3.673 5.267 7.702 15.031 76.557 11.768 -1.161 ms -5.436 33.29
Server Offset 79.160.225.13 -59.926 -33.405 -5.296 -1.788 1.425 3.049 11.556 6.721 36.454 5.391 -2.320 ms -6.648 58.53
TDOP 0.500 0.500 0.550 1.010 1.590 11.810 11.810 1.040 11.310 1.445 1.238 6.852 50.26
Temp /dev/sda 18.000 18.000 20.000 23.000 26.000 26.000 31.000 6.000 8.000 2.081 23.414 °C
Temp LM0 32.000 32.000 32.000 34.000 36.000 48.000 51.000 4.000 16.000 2.363 33.946 °C
Temp LM1 37.000 37.000 37.000 38.000 39.000 45.000 46.000 2.000 8.000 1.204 38.170 °C
Temp LM2 0.000 0.000 0.000 19.000 19.000 19.000 19.000 19.000 19.000 4.943 17.613 °C
Temp LM3 28.000 29.000 29.000 30.000 31.000 41.000 44.000 2.000 12.000 1.915 30.168 °C
Temp LM4 30.000 31.000 31.000 41.000 47.000 50.000 55.000 16.000 19.000 5.280 40.985 °C
Temp LM5 28.000 29.000 29.000 30.000 32.000 41.000 44.000 3.000 12.000 1.962 30.185 °C
Temp LM6 30.000 31.000 31.000 32.000 34.000 46.000 50.000 3.000 15.000 2.348 32.638 °C
Temp LM7 32.000 33.000 33.000 35.000 36.000 48.000 51.000 3.000 15.000 2.300 34.709 °C
Temp LM8 33.000 33.000 33.000 35.000 37.000 48.000 51.000 4.000 15.000 2.216 35.180 °C
Temp LM9 33.000 33.000 33.000 35.000 37.000 48.000 51.000 4.000 15.000 2.216 35.180 °C
Temp ZONE0 20.000 20.000 20.000 20.000 20.000 20.000 20.000 0.000 0.000 0.000 20.000 °C
Temp ZONE1 32.000 32.000 32.000 34.000 36.000 48.000 51.000 4.000 16.000 2.364 33.948 °C
Temp ZONE2 28.000 29.000 29.000 30.000 32.000 41.000 44.000 3.000 12.000 1.961 30.185 °C
Temp ZONE3 32.000 32.000 32.000 34.000 36.000 48.000 51.000 4.000 16.000 2.363 33.946 °C
Temp ZONE4 32.000 32.000 32.000 34.000 36.000 48.000 51.000 4.000 16.000 2.363 33.946 °C
Temp ZONE5 31.000 31.000 31.000 41.000 48.000 50.000 56.000 17.000 19.000 5.296 40.993 °C
Temp ZONE6 28.000 29.000 29.000 30.000 31.000 41.000 44.000 2.000 12.000 1.919 30.183 °C
nSats 7.000 7.000 7.000 10.000 12.000 13.000 13.000 5.000 6.000 1.445 10.018 nSat -0.1353 2.562
Summary as CSV file

Stats for the last 1, 7, 35, 98, 371, some days, or live gps data.

Glossary:

frequency offset:
The difference between the ntpd calculated frequency and the local system clock frequency (usually in parts per million, ppm)
jitter, dispersion:
The short term change in a value. NTP measures Local Time Jitter, Refclock Jitter, and Server Jitter in seconds. Local Frequency Jitter is in ppm or ppb.
ms, millisecond:
One thousandth of a second = 0.001 seconds, 1e-3 seconds
mu, mean:
The arithmetic mean: the sum of all the values divided by the number of values. The formula for mu is: "mu = (∑xi) / N". Where xi denotes the data points and N is the number of data points.
ns, nanosecond:
One billionth of a second, also one thousandth of a microsecond, 0.000000001 seconds and 1e-9 seconds.
percentile:
The value below which a given percentage of values fall.
ppb, parts per billion:
Ratio between two values. These following are all the same: 1 ppb, one in one billion, 1/1,000,000,000, 0.000,000,001, 1e-9 and 0.000,000,1%
ppm, parts per million:
Ratio between two values. These following are all the same: 1 ppm, one in one million, 1/1,000,000, 0.000,001, and 0.000,1%
‰, parts per thousand:
Ratio between two values. These following are all the same: 1 ‰. one in one thousand, 1/1,000, 0.001, and 0.1%
refclock:
Reference clock, a local GPS module or other local source of time.
remote clock:
Any clock reached over the network, LAN or WAN. Also called a peer or server.
time offset:
The difference between the ntpd calculated time and the local system clock's time. Also called phase offset.
σ, sigma:
Sigma denotes the standard deviation (SD) and is centered on the arithmetic mean of the data set. The SD is simply the square root of the variance of the data set. Two sigma is simply twice the standard deviation. Three sigma is three times sigma. Smaller is better.
The formula for sigma is: "σ = √[ ∑(xi-mu)^2 / N ]". Where xi denotes the data points and N is the number of data points.
Skewness, Skew:
The skewness of a random variable X is the third standardized moment and is a dimension-less ratio. ntpviz uses the FIsher-Pearson moment of skewness. There are other different ways to calculate Skewness Wikipedia describes Skewness best: "The qualitative interpretation of the skew is complicated and unintuitive."
A normal distribution has a skewness of zero.
Kurtosis, Kurt:
The kurtosis of a random variable X is the fourth standardized moment and is a dimension-less ratio. ntpviz uses standard Kurtosis. There are other different ways to calculate Kurtosis.
A normal distribution has a Kurtosis of three. NIST describes a kurtosis over three as "heavy tailed" and one under three as "light tailed".
upstream clock:
Any server or reference clock used as a source of time.
µs, us, microsecond:
One millionth of a second, also one thousandth of a millisecond, 0.000,001 seconds, and 1e-6 seconds.



This page autogenerated by ntpviz, part of the NTPsec project
html 5    Valid CSS!